
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Implementation of Depth-Limited Search and Pattern

Matching Algorithms for the 'Search' Command

Feature in IF2230-2024 Operating System

Shulha - 13522087

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: shulhafahmi@gmail.com

Abstract—This electronic document is a “live” template and

already defines the components of your paper [title, text, heads,

etc.] in its style sheet. *CRITICAL: Do Not Use Symbols, Special

Characters, or Math in Paper Title or Abstract. (Abstract)

Keywords—component; formatting; style; styling; insert (key

words)

I. INTRODUCTION

The development of operating systems involves a deep
understanding of various subsystems and their interactions. As
part of the IF2230 Operating System class in 2024 in
Informatics Engineering ITB, students are tasked with creating
the IF2230-2024 Operating System, a comprehensive project
that serves as an introduction to kernel development and the
practical demonstration of operating system subsystems. The
target platform for this operating system is the 32-bit Protected
Mode on the x86 architecture, executed using QEMU. The
course covers a wide range of topics including Toolchain,
Kernel, Global Descriptor Table (GDT), Interrupts, Drivers,
File System, Paging, User Mode, Shell, Processes, Scheduler,
and Multitasking.

One of the critical components of this project is the
implementation of a shell in user mode, which allows users to
interact with the operating system via a command line
interface. The shell supports various commands such as `cd`
(change directory), `ls` (list files and directories), `mkdir`
(create a new directory), `cat` (display the contents of a text
file), `find` (search for files or directories in the file system),
`help` (list available commands), `clear` (clear the screen),
among others. These commands facilitate basic file system
navigation and management, enhancing user interaction with
the operating system.

In this paper, the author proposes the implementation of a
new command, `search`. The `search` command is designed to
accept a string as a parameter and search through the file
system for text files that match the input string. The
implementation of this command will leverage graph traversal
algorithms, specifically Breadth-First Search (BFS) and Depth-
First Search (DFS), as well as pattern matching algorithms to
efficiently locate and identify matching files.

By integrating BFS and DFS algorithms, the command will
explore directories and files in a structured manner, ensuring
comprehensive coverage of the file system. Pattern matching
algorithms will be employed to accurately identify text files
that contain the specified string, enhancing the command's
utility and precision.

This paper will detail the design, implementation, and
testing of the "search" command, highlighting the integration
of theoretical concepts with practical application.these
components, incorporating the applicable criteria that follow.

II. FUNDAMENTAL THEOREM

A. Graph Traversal

A graph is a set of objects called vertices, connected by
edges. Graphs can represent various problems. Graph traversal
refers to the process of searching for solutions to problems
represented by graphs (assuming the graph is connected). In the
search for solutions, there are two approaches to graph
representation: static graphs and dynamic graphs. A static
graph is a graph that is fully formed before the search process
begins (represented as a data structure). A dynamic graph is a
graph that forms during the search process (the graph is not
available before the search, it is built during the search for the
solution).

Algorithms for graph traversal involve visiting the vertices
in the graph systematically. Common algorithms for
uninformed/blind search graph traversal include Breadth-First
Search (BFS) and Depth-First Search (DFS).

For dynamic graphs, the search for solutions is conducted
by building a dynamic tree. Each vertex is examined to
determine if the solution (goal) has been reached. If a vertex
represents a solution, the search can be terminated (for a single
solution) or continued to find other solutions (for all solutions).
The dynamic tree is represented by a state space tree, where
vertices denote problem states (viable to form solutions), the
root vertex represents the initial state, and leaf vertices
represent solution/goal states. The solution is the path to the
goal state.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

B. Depth-First Search (DFS) Algorithm

The Depth-First Search (DFS) algorithm is a graph
traversal algorithm that starts from a specific node and explores
as many unvisited nodes as possible before backtracking. The
process is as follows:

1. Visit node v.

2. Visit node w, which is adjacent to node v.

3. Repeat DFS starting from node w.

4. When a node u is reached such that all its adjacent nodes
have been visited, backtrack to the last visited node that has
unvisited adjacent nodes.

5. The search ends when there are no more unvisited nodes
that can be reached from the visited nodes.

The construction of the status space tree using DFS is
initialized with the initial state as the root. Generation is
performed on all child nodes from the current node first (until
there are no more) before moving on to the neighboring nodes.
While DFS is less efficient in terms of time complexity, it is
more efficient in terms of space complexity. DFS can
sometimes choose the wrong path, leading to a longer or even
infinite path. Therefore, step selection is crucial.

Depth-First Search (DFS) possesses distinct properties.
Firstly, completeness is assured as long as the branching factor
(b) is finite, and there is adequate handling of redundant paths
and repeated states. However, DFS lacks optimality, meaning it
does not guarantee the shortest path to a solution. In terms of
time complexity, DFS operates with O(bm), where b is the
branching factor and m is the maximum depth of the state
space tree. Conversely, the space complexity of DFS is O(bm),
reflecting its efficiency in utilizing memory, given that b is the
branching factor and m is the maximum depth of the state
space tree. In conclusion, while DFS is less efficient in terms of
time complexity, it is advantageous in terms of space
complexity.

The following example illustrates the sequence of nodes
visited in DFS order from A → A, B, D, E, H, F, G, C and is
depicted as a tree.

Fig. 1. Graph Traversal Using DFS (Source: [X])

C. Depth-Limited Search (DLS) Algorithm

Depth-Limited Search (DLS) is a variation of Depth-First
Search (DFS) that incorporates a depth constraint to manage
the depth of the search, thus addressing the primary issue of
DFS potentially leading to very long or infinite paths due to

incorrect step selections. Unlike Breadth-First Search (BFS),
which ensures the discovery of the path with the fewest steps
but demands significant memory to maintain the search status,
DFS is more memory-efficient but does not guarantee finding
the shortest path to the solution. DLS mitigates this by treating
nodes at a specified depth limit, l, as having no successors,
effectively preventing the search from extending indefinitely.
However, the primary challenge with DLS lies in determining
the appropriate depth limit, which should be at least equal to
the depth of the shallowest goal.

Despite this improvement, DLS is not complete because it
might fail to find a solution if the solution lies deeper than the
set limit. It is also not optimal as it does not necessarily find the
shortest path to the goal. The time complexity of DLS is O(bl),
where b is the branching factor and l is the depth limit, and its
space complexity is also O(bl), since it only needs to store the
nodes along the current path and their depths. In essence, DLS
combines the memory efficiency of DFS with a depth
constraint to avoid infinite paths, but this comes at the cost of
sacrificing completeness and optimality, making the
determination of the correct depth limit critical for its
effectiveness.

D. Pattern Matching Algorithm

Pattern matching is the process of finding the first location
in a text that matches a certain pattern. In this context, we are
given T, or text, which is a long string with a length of n
characters, and P, or pattern, which is a string with a length of
m characters (assuming m is much smaller than n) that will be
searched for within the text. The goal of pattern matching is to
find the first location in the text that corresponds to the given
pattern.

E. Knuth-Morris-Pratt (KMP) Algorithm

The Knuth-Morris-Pratt (KMP) algorithm searches for a
pattern in a text from left to right, similar to the brute force
algorithm. However, the difference is that the KMP algorithm
shifts the pattern more intelligently than the brute force
algorithm, thus avoiding many unnecessary comparisons.

The creator of this algorithm is Donald E. Knuth, a
computer scientist and Professor Emeritus at Stanford
University. Knuth is renowned for his monumental work, "The
Art of Computer Programming," and is considered the father of
algorithm analysis. His work has been highly influential in the
development of rigorous analysis of computational complexity
of algorithms and in the formulation of formal mathematical
techniques for algorithms.

In the KMP algorithm, when there is a mismatch between
the text and the pattern at position P at index j (with T[i] not
equal to P[j]), the algorithm shifts the pattern in the most
efficient way to avoid redundant comparisons. The solution is
to shift the pattern as far as possible while ensuring that the
shift covers the largest prefix of P[0..j-1] that is also a suffix of
P[1..j-1]. This allows the algorithm to bypass comparisons that
are guaranteed to fail, thereby increasing the efficiency of
pattern searching in the text.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 2. Illustration of string matching with KMP (Source: [X])

The time complexity of KMP for computing the prefix
function is O(m) and for string searching is O(n), resulting in a
total time complexity of O(m+n). The advantage of KMP is
that it does not require backtracking in the input. However, its
disadvantage is that its performance degrades as the alphabet
size increases.

F. Boyer-Moore (BM) Algorithm

The Boyer-Moore algorithm is a pattern-matching
algorithm based on two main techniques. The first technique is
called the "looking-glass" technique, where the search for
pattern P in text T is conducted by moving backward through
P, starting from its end. The second technique is the "character-
jump" technique. When a mismatch occurs at position T[i] and
the character in pattern P[j] does not match T[i], three
possibilities are tried in sequence.

In the first case, if pattern P contains character x, then P is
shifted to the right to align the last occurrence of x in P with
T[i]. In the second case, if pattern P contains character x but
shifting to the last occurrence of x is not possible, then P is
shifted right by one character to align with T[i+1]. In the third
case, if neither of the previous cases applies, P is shifted to
align P[0] with T[i+1].

The Last Occurrence function is used in the Boyer-Moore
algorithm to map pattern P and alphabet A into a function L(x)
that stores the index of the last occurrence of each character x
in A. L(x) is defined as the largest index i where P[i] = x, or -1
if no such index exists.

In terms of analysis, the worst-case time complexity of the
Boyer-Moore algorithm is O(nm + A), where the algorithm is
fast if the alphabet (A) is large and slow if the alphabet is
small. For instance, this algorithm performs well for English
text but is less optimal for binary text. Boyer-Moore is
significantly faster compared to the brute force method in
searching English text.

Fig. 3. Illustration of string matching with BM (Source: [X])

G. IF2240 (2024) Operating System Project

The project use the 32-bit Protected Mode on the

x86architecture and also use FAT32 filesystem.

The 32-bit Protected Mode is a mode of operation in the

x86 architecture that allows the operating system to manage

memory and resources more efficiently. In this mode, the

processor divides the 32-bit address space into four segments:

code, data, stack, and extra. Each segment has its own base

address and limit, which are stored in the segment registers

(CS, DS, SS, and ES). This segmentation provides a higher

level of memory protection and isolation between different

parts of the operating system and applications.
In 32-bit Protected Mode, the operating system uses the

Global Descriptor Table (GDT) to manage the segments. The
GDT is a data structure that contains the base and limit of each
segment, as well as other attributes such as the segment type
and access rights. The operating system uses the GDT to set up
the segment registers and to switch between different
segments. This allows the operating system to dynamically
allocate and deallocate memory, and to provide a higher level
of security and isolation between different parts of the system.

One of the key benefits of 32-bit Protected Mode is that it
allows the operating system to use a flat memory model, where
all memory is addressed using a single 32-bit address space.
This simplifies memory management and allows the operating
system to use a more efficient memory allocation strategy.
Additionally, the segmentation provided by 32-bit Protected
Mode helps to prevent memory corruption and other security
vulnerabilities by isolating different parts of the system from
each other.

III. IMPLEMENTATION

A. Limitations

• The feature ‘search’ command is added to IF2230-2024
OS Project by UsusBuntu group which is not perfect in
the implementation.

• Maximum depth set to ten, potentially limiting deeper
data exploration.

• Search functionality restricted to .txt files, excluding
other file formats.

• Search queries limited to 20 characters, affecting the
comprehensiveness of searches.

B. Scope of Discussion

The discussion example in this paper will use the graph as
shown on Fig. 4.

 The “tes.txt” file contains the string “Informatika berjiwa
satria, tidak pernah mengenal keluh kesah” and the “stima.txt”
file contains the string “aaaa cape stima mati cape stima aaa”.

 Author will discuss five different cases of strings that are
matched or not matched any of the files.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 4. Illustration of graph used in this paper (Source: Primary)

C. Depth-Limited Search Implementation

Implementing DLS to the illustration will not violate the
level limit of 10 as in our limitations. The DLS traversal is
implemented with the search_dls and

depth_limited_search functions.

The primary function, search_dls, initializes a buffer,

sets a directory cluster number and search pattern, and calls the
depth_limited_search function to perform the actual

search.

The depth_limited_search function operates

recursively, navigating the directory structure up to a specified
depth limit, we use ten as limitations. It reads directory entries
and determines if each entry is a directory or a text file. If it's a
directory, the function appends the directory name to the buffer
and recursively searches within it. If a text file is found, its
content is read, and the pattern matching algorithm is used to
search for the pattern within the file. If the pattern is
found/matched, the file details and content are appended to the
buffer. The function ensures the buffer only retains relevant
paths by removing directory names if the search within them is
unsuccessful. Overall, the code effectively traverses the file
system to find and list text files containing the desired pattern,
handling both directory and file cases with appropriate
recursion and buffer management.

Fig. 5. Code implementation of DLS Traversal (Source: Personal)

Fig. 6. Code implementation of DLS Traversal (Source: Personal)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

D. Pattern (String) Matching Implementation

The implementation of Boyer-Moore and Knuth-Morris-
Pratt Algorithm is in the boyer_moore and

knuth_morris_pratt functions.

The knuth_morris_pratt function starts by checking the

lengths of the pattern and text, and if the pattern length is zero,
it returns false, indicating no match. It then constructs the
bounding function array pi, which is used to store the length

of the longest prefix which is also a suffix. This array helps in
avoiding redundant comparisons. The algorithm iterates
through the text and pattern, comparing characters. If a
mismatch occurs, it uses the bounding function array to shift
the pattern efficiently without rechecking previously matched
characters. If a complete match of the pattern is found in the
text, it returns true. If no match is found by the end of the text,
it returns false.

Fig. 7. Code implementation of KMP (Source: Personal)

The boyer_moore function starts by initializing an array

bad_char to store the last occurrence of each character in the
pattern. This array helps in determining the shift distance when
a mismatch occurs. The function then iterates through the text
from left to right, comparing the pattern characters from right
to left. If a mismatch is found, the algorithm uses the bad_char
array to determine the optimal shift distance, ensuring that the
pattern is aligned with the next possible match position in the
text. If a complete match is found, the function returns true. If
the pattern is not found by the end of the text, it returns false.

Fig. 8. Code implementation of Boyer-Moore (Source: Personal)

E. Experiments of DLS and Pattern Matching Algorithm

The folder structure of the graph illustration as shown in

Fig 4. is shown in Fig. 9 and Fig. 10 below.

Fig. 9. Illustration Folder Structure (Source: Personal)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 10. Illustration Folder Structure (Source: Personal)

Generally, using DLS to the graph illustration will traverse

through root – tes.txt – stima.txt – folder1 – folder1/folder3 –

folder1/folder3/tes.txt – folder1/folder4/stima.txt –

folder1/folder5 – folder1/tes.txt – folder2 – folder2/folder6 –

folder2/folder6/tes.txt – folder2/folder6/stima.txt –

folder2/folder7 – folder2/stima.txt.

1) Command “search tika”

This command should print all the tes.txt files

directory including their contents. The tes.txt files are in

root, folder1, folder3, and folder6.

Fig. 11. Command “search tika” (Source: Personal)

2) Command “search stima”

This command should print all the stima.txt files

directory including their contents. The tes.txt files are in

root, folder4, folder6, and folder2.

Fig. 12. Command “search stima” (Source: Personal)

3) Command “search mati”

This command should print all the stima.txt and

tes.txt files directory including their contents.

Fig. 13. Command “search mati” (Source: Personal)

4) Command “search algeo”

This command should print that no files match.

Fig. 14. Command “search algeo” (Source: Personal)

5) Command “search mati” within folder1 directory

This command should print all the stima.txt and

tes.txt files directory including their contents in folder1

directory, that is tes.txt in folder1 itself and also folder3

and stima.txt in folder4.

Fig. 15. Command “search mati” in folder1 directory (Source: Personal)

IV. CONCLUSION

The search command implementation for the IF2230-2024
Operating System successfully integrates depth-limited search
(DLS) and pattern matching algorithms to enhance file system
navigation. By leveraging DLS, the command efficiently
explores directories up to a specified depth, while the Knuth-
Morris-Pratt (KMP) and Boyer-Moore (BM) algorithms
provide accurate pattern matching within text files.

This approach addresses the need for efficient and precise
file searches, as outlined in the project introduction. Despite
some limitations, such as the depth constraint and restricted
pattern length, the search command significantly improves the
operating system's usability, demonstrating a practical
application of theoretical concepts in real-world scenarios.

VIDEO LINK AT YOUTUBE (Heading 5)

YouTube Video Link https://youtu.be/IHwueKVv-os.
Github repository on YouTube caption.

https://youtu.be/IHwueKVv-os

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

ACKNOWLEDGMENT

The author expresses gratitude to Allah SWT for His
blessings, enabling the completion of this paper. The author
would also like to especially thank the lecturer of the IF2211
Algorithm Strategies course,Dr. Ir. Rinaldi Munir, M.T. for his
inspiring and dedicated teaching and also for providing plenty
sources on the courses as this paper would not have been
possible without them. The author acknowledges the presence
of imperfections in this work and welcomes suggestions and
critiques for future improvement.

REFERENCES

[1] C. Hernand, “Programming Embedded Systems in C and C++,”
University of Concepción, 2005. [Online]. Available:
http://www.inf.udec.cl/~chernand/sc/links/embedded_pmode.pdf.
Accessed on: June 12, 2024. J. Clerk Maxwell, A Treatise on Electricity
and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

[2] Distributed System Laboratory, “Book I: Protected Mode x86, IF2230
Operating System, 2nd Edition” Informatics Engineering ITB, 2024.
[Online]. Unpublished.

[3] M. H. Nour, “Computer Organization and Assembly Language Lecture
Notes,” University of Science and Technology, 2018. [Online].
Available: https://csit.ust.edu.sd/files/2018/10/lec2-COAsm2018.pdf.
Accessed on: June 12, 2024.

[4] R. Munir, “BFS dan DFS Bagian 1,” IF2211 Strategi Algoritma, 2024.
[Online]. Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/
Stmik/2023-2024/BFS-DFS-2021-Bag1-2024.pdf. Accessed on: June 12,
2024.

[5] R. Munir, “BFS dan DFS Bagian 2,” IF2211 Strategi Algoritma, 2021.
[Online]. Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/
Stmik/2020-2021/BFS-DFS-2021-Bag2.pdf. Accessed on: June 12, 2024.

[6] R. Munir, “Pencocokan String,” IF2211 Strategi Algoritma, 2024.
[Online]. Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf. Accessed on: June 12, 2024

STATEMENT

I hereby declare that the paper I have written is my own work,

not a reproduction or translation of someone else's paper, and

is not plagiarized.

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, June 12, 2024

13522087 Shulha

https://informatika.stei.itb.ac.id/~rinaldi.munir/
https://informatika.stei.itb.ac.id/~rinaldi.munir/
https://informatika.stei.itb.ac.id/~rinaldi.munir/

